1. The K_{sp} of CaCO$_3$ is 4.5×10^{-9}. The concentration of Ca in sea water is 0.00013 M. Compute pCO$_3$ in sea water if sea water is a saturated solution of calcium carbonate.

\[
K_{sp} = [Ca^{2+}][CO_3^{2-}]
\]

\[
[CO_3^{2-}] = \frac{K_{sp}}{[Ca^{2+}]} \quad \text{Take } \log_{10}
\]

\[
\rho\text{CO}_3 = \rho K_{sp} - \rho\text{Ca}
\]

\[
8.35 - 1.087 = 6.966
\]

2. The K_{sp} of AgBr is 8.3×10^{-13}. Suppose you titrate a solution of NaBr with AgNO$_3$. What is the concentration of Ag$^+$ at the equivalence point?

\[
K_{sp} = [Ag^+] [Br^-]
\]

at eq pt \ $[Ag^+] = [Br^-] = x$

\[
x^2 = K_{sp} \Rightarrow x = \sqrt{K_{sp}} = 7.1 \times 10^{-7} \text{ M}
\]

3. What is the general chemical behavior of EDTA? Is it best characterized by Bronsted-Lowry or Lewis acid-base theory? Your answer must include an example!

EDTA is a chelating agent, a multidentate ligand that engulfs metal ions. As it does this, it donates lone pairs of electrons to the metal ion, so it can be viewed as a Lewis base (e-pair donor) and the metal ion can be viewed as a Lewis acid (e-pair acceptor). It does not fit the Bronsted-Lowry definition of an acid-base reaction.
4.a The fully protonated form of EDTA is called H_2Y^{2+}. Draw its structure.

4.b When EDTA has two ionizable protons left, it is called H_2Y^2. Draw its structure.

4.c The fully deprotonated form of EDTA is called Y^-. Draw its structure.

5. What is $[\text{EDTA}]$? Which is bigger, $[\text{EDTA}]$ or $[Y^-]$? What is the significance of the quantity $[Y^-]/[\text{EDTA}]$?

\[
\frac{[Y^-]}{[\text{EDTA}]} = \alpha_{Y^-} \quad \text{the fraction that is fully deprotonated and available as a chelating agent.}
\]

So $[\text{EDTA}] > [Y^-]$.

6. For BaY^{2+}, log K_f is 7.86. For VY^{2-}, log K_f is 12.7. If you mixed up a solution that was 0.02 M in Ba^{2+}, 0.02 M in V^{2-}, and 0.02 M in EDTA, what would be the dominate chemical species in solution at equilibrium? Explain.

\[
\frac{[\text{BaY}^{2+}]}{[\text{Ba}^{2+}] [Y^-]} = K_f = 10^{7.86}
\]

\[
\frac{[\text{VY}^{2-}]}{[\text{V}^{2+}] [Y^-]} = K_f = 10^{12.7}
\]

K_f for VY^{2-} is greater, so it forms at the expense of BaY^{2+}.

Solution will contain $0.02 \text{M} \text{Ba}^{2+}$ and $0.02 \text{M} \text{VY}^{2-}$.

7. For EDTA, a_{Y^-} is 3.7×10^{-7} at pH 5 and 5.4×10^{-2} at pH 9. Which pH would be more suitable for an EDTA titration of Ba^{2+}? Why?

\[
K_f' = a_{Y^-} K_f
\]

at pH = 5, $K_f' = (3.7 \times 10^{-7}) 10^{7.86} = 27$

at pH = 9, $K_f' = (0.054) 10^{2.76} = 3.9 \times 10^6$

pH 9 would be much better because of the much larger K_f'.
8. You carry out a strong acid-weak base titration: 25.00 ml of 0.09271 M NH₃ vs 0.1318 M HCl. What volume of HCl is required to reach the equivalence point? What is the pH of the titration solution 1 ml before the equivalence point, at the equivalence point, and 1 ml after the equivalence point? Draw a small and very rough sketch of the titration curve. The pKa of ammonium ion is 9.244.

\[\text{HCl} + \text{NH}_3 \rightarrow \text{NH}_4^+ + \text{Cl}^- \text{ titration reaction} \]

\[\text{ml HCl} = \frac{m_{\text{NH}_3} \times M_{\text{NH}_3}}{M_{\text{HCl}}} = \frac{25.00 \times 0.09271}{0.1318} = 17.59 \text{ ml} \]

1 ml before ext pt: 16.59 ml HCl added. Most of the NH₃ is now NH₄⁺, but some NH₃ remains: BUFFER

\[\rho_H = \rho_{2.244} + \log \frac{1}{16.59} = 8.02 \]

1 ml after ext pt: now NH₄⁺! Salt of weak base is a weak acid,

\[\text{NH}_4^+ + \text{HOH} \rightleftharpoons \text{NH}_3 + \text{H}_2\text{O} \]

\[F = \frac{25 \times 0.09271}{42.6} = 0.5871 \]

\[F = \frac{25 \times 0.09271}{42.6} = 0.0871 M \quad \rho_H = 5.05 \]

1 ml later: excess HCl determines \[[\text{H}^+] = \frac{\text{ml} \times 0.1318}{4.56} = 0.00302 M \]

\[\rho_H = 2.52 \]

9. Back titration: A cyanide solution can be treated with excess nickel ion to convert the CN⁻ to Ni(CN)₄²⁻. Ni(CN)₄²⁻ is blocked from reaction with EDTA, but the extra Ni²⁺ not complexed by cyanide can then be titrated with EDTA in order to find the original amount of cyanide. 12.73 ml of cyanide solution was mixed with 25.00 ml of 0.01709 M Ni²⁺; then the back titration required 10.15 ml of 0.01307 M EDTA solution. Write balanced reactions to explain the chemistry, and identify all Lewis acids and bases. Find the concentration of cyanide in the original solution.

\[\text{Ni}^{1+2} + 4 \text{CN}^- \rightarrow \text{Ni(CN)}_4^{2-} \]

\[\text{ml}_{\text{Ni}} \times M_{\text{Ni}} = \text{ml}_{\text{EDTA}} M_{\text{EDTA}} + \text{ml}_{\text{Ni(CN)}_4^{2-}} M_{\text{Ni(CN)}_4^{2-}} \]

\[\text{ml}_{\text{Ni(CN)}_4^{2-}} = \text{ml}_{\text{Ni}} M_{\text{Ni}} - \text{ml}_{\text{EDTA}} M_{\text{EDTA}} \]

\[M_{\text{CN}^-} = \frac{4(\text{ml}_{\text{Ni}} M_{\text{Ni}} - \text{ml}_{\text{EDTA}} M_{\text{EDTA}})}{\text{ml}_{\text{CN}^-}} \]

\[M_{\text{CN}^-} = \frac{4(12.73(0.01709) - 10.15(0.01307))}{12.73} = 0.09257 M \text{ CN}^- \]
10. Sketch the titration curve for an EDTA titration. 30 mls of 0.010 M ZnCl₂ are titrated using 0.010 M EDTA. The solution is buffered to pH 9 where \(\alpha_{Y^4}\) equals 0.054. The log of the formation constant of ZnY²⁻ is 16.50. Compute pZn at 0, 20, 29, 30, 31, and 32 mls of EDTA added.

\[K_f' = 0.054 \times 10^{16.50} = 1.7 \times 10^{15} \]

\[\text{Zn}^{2+} + \text{EDTA} \rightleftharpoons \text{ZnY}^{2-} \]

0.30 mmoles Zn²⁺ at the start

<table>
<thead>
<tr>
<th>m</th>
<th>(\text{ml} + \text{m})</th>
<th>(\text{m} + \text{tot})</th>
<th>([\text{Zn}^{2+}])</th>
<th>([\text{ZnY}^2])</th>
<th>(\text{excess} \ Y^2)</th>
<th>(pZn)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>30</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td>2.00</td>
</tr>
<tr>
<td>20</td>
<td>50</td>
<td>0.1</td>
<td>(\frac{0.1 \text{ ml}}{50 \text{ ml}} = 2 \times 10^{-3})</td>
<td></td>
<td></td>
<td>2.70</td>
</tr>
<tr>
<td>29</td>
<td>59</td>
<td></td>
<td></td>
<td>(\frac{59}{59} = 1.7 \times 10^{-4})</td>
<td></td>
<td>3.27</td>
</tr>
<tr>
<td>30</td>
<td>60</td>
<td>(\frac{0.3}{60} = 0.005 \text{ M})</td>
<td></td>
<td></td>
<td></td>
<td>8.77</td>
</tr>
<tr>
<td>31</td>
<td>61</td>
<td>(\frac{0.3}{61})</td>
<td>(\frac{1.01}{61})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\left[\text{Zn}^{2+}\right] = \left[\text{Y}^4\right] \Rightarrow \chi = \sqrt{\frac{E - \chi}{K_f'}})</td>
<td></td>
<td>(1.7 \times 10^{-4})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>62</td>
<td>(\frac{0.3}{62})</td>
<td>(\frac{1.02}{62})</td>
<td></td>
<td></td>
<td>14.05</td>
</tr>
</tbody>
</table>